
Cyclic Scheduling

Denise L. Draper�

Harlequin Incorporated

1201 Third Avenue, Suite 2380
Seattle, WA 98101

ddraper@harlequin.com

Ari K. J�onssony

RIACS

NASA Ames Research Center, M/S 269-2
Mo�ett Field, CA 94035

jonsson@ptolemy.arc.nasa.gov

David P. Clements

Computational Intelligence Research Laboratory
University of Oregon

Eugene, OR 97403-1269

clements@cirl.uoregon.edu

David E. Joslin

i2 Technologies
909 E. Las Colinas Blvd.

Irving, TX 75038

david joslin@i2.com

Abstract

In this paper we consider the problem of cyclic
schedules such as arise in manufacturing. We
introduce a new formulation of this problem
that is a very simple modi�cation of a standard
job shop scheduling formulation, and which en-
ables us to use existing constraint reasoning
techniques to generate cyclic schedules. We
present evidence for the e�ectiveness of this for-
mulation, and describe extensions for handling
multiple-capacity resources and for recovering
from breaks in cyclic schedules.

1 Introduction

A cyclic scheduling problem is a scheduling problem in
which some set of activities is to be repeated an inde�-
nite number of times, and it is desired that the sequence
be repeating. Cyclic scheduling problems arise in do-
mains such as manufacturing, time-sharing of processors
in embedded systems, and in compilers for scheduling
loop operations for parallel or pipelined architectures.
In this paper, we will take the manufacturing domain as
our motivation and address the cyclic version of the job
shop problem, in which a set of tasks (which describe
the building of a single widget) are to be scheduled into
a cyclic schedule for a widget factory.
Cyclic scheduling has not received much attention in

the AI community, but there is a considerable body of

�This work was done while this author was at Rockwell
Palo Alto Lab.

ySome of this author's contributions to this work were
made while at Rockwell and with support through CIRL.

work available in the OR literature; [Hanen and Mu-
nier, 1995] gives an excellent overview. Many heuris-
tic approaches have been suggested for particular prob-
lems such as hoist scheduling, but there is also work on
representations for general job shop problems, such as
[Hanen, 1994] and [Roundy, 1992]. We do not have the
space in this paper to fully describe their approaches, but
the common element involves building a special-purpose
data structure which represents the problem, and solv-
ing it using techniques such as branch-and-bound search
or mixed integer programming.

In this paper, we will describe a di�erent approach
to the cyclic scheduling problem, one which is a con-
ceptually simple extension of the constraint-based for-
mulation of scheduling problems that has enjoyed much
recent success. The main advantages to using such a
constraint-based framework are the availability of exist-
ing techniques and the extendability of constraint-based
representations. This allows us to transparently exploit
the power available in any of the modern constraint satis-
faction search engines, utilize other constraint reasoning
techniques such as constraint propagation and consis-
tency checks, and use the problem formulation within
larger constraint decision problems. We also �nd that
the formulation lends itself to the use of methods for
recovering schedules after a failure, and that it can be
extended to handle more complex problems such as re-
source constrained project scheduling.

We will start with a brief description of the now-
standard constraint formulation of job shop scheduling,
and then go on to present our extension to handle cyclic
scheduling problems. We then present experimental re-
sults on solving such cyclic scheduling problems, and
briey discuss two extensions to our approach.



2 Job Shop Scheduling

The job shop scheduling problem can be found in many
standard texts (e.g. [Baker, 1974]); the problem is speci-
�ed by a set of tasks, T , and a set of resources, R. There
is a function on tasks, dur(t), specifying a non-zero du-
ration for each task, and a predicate u(t; r) specifying
whether task t uses resource r.1 Finally, there is a set
of precedence constraints, where each constraint ti < tj
speci�es that the task ti must be completed before the
task tj can begin. A valid schedule is an assignment of
start times to each task such that the precedence con-
straints are obeyed and no two tasks require the same
resource at the same time. The completion time of the
�nal task in the schedule is called the makespan of the
schedule. The goal of scheduling can either be satis�c-
ing (�nd a schedule whose makespan is at most D), or
optimizing (�nd a schedule with minimal makespan).
The satis�cing scheduling problem can be encoded as a

constraint satisfaction problem, and solved using search
or a combination of constraint propagation and search,
and the optimizing scheduling problem can be solved
with additional search or branch-and-bound over pos-
sible makespans. Early approaches focused on search-
ing over the space of start times for tasks. More recent
approaches have found it more e�cient to search over
ordering decisions between tasks|once su�cient order-
ings have been added to guarantee that the resource con-
straints have been satis�ed, it is simple to determine a
minimal start time for each task consistent with those
orderings.

3 Cyclic Job Shop Scheduling

In the job shop scheduling problem, the set of tasks is
�xed as given. For the cyclic job shop problem, we as-
sume that the set of tasks is a template which we wish
to repeat inde�nitely|for example, the tasks represent
the steps to build a single widget, and we wish to con-
struct a schedule for a widget factory. In order to make
e�cient use of our resources, we will want to overlap the
manufacture of multiple widgets. A cyclic schedule for
building widgets is one in which a new widget is begun
everyK time units (the cycle time), and the same sched-
ule of tasks is completed for each widget. Assuming the
time to complete each individual widget is greater than
K, the result is a pipeline in which multiple widgets are
under construction at any one time.
It is not the case that a cyclic schedule is necessar-

ily the most e�cient schedule; for any �xed number of
widgets, N , a non-cyclic schedule for building N wid-
gets might very well exist that is more e�cient than any
cyclic schedule [Hanen, 1994]. Even if we do not know N
in advance, we could still use anN -widget schedule as an
approximation, repeating it as necessary. There are two
signi�cant advantages to using cyclic schedules, however.

1Note that this approach to representing resource usage
allows for tasks requiring more than one resource, which is a
commonly used extension to the standard job shop problem.

A
m1

D
m2

F
m2

E
m1

B
m2

C
m3

(a)

A
m1

D
m2

E
m1

F
m2

(b)

B
m2
C
m3

A
m1

D
m2

F
m2

E
m1

B
m2
C
m3

A
m1

D
m2

F
m2

E
m1

B
m2
C
m3

A
m1

D
m2

F
m2

E
m1

B
m2
C
m3

(c)

Figure 1: A scheduling problem and a cyclic solution.
(a) shows a cyclic problem: each box is a task with a
name and resource required, the size of the box indicates
task duration and the arcs indicate required precedence.
(b) shows an arbitrary assignment of starting times to
tasks that respects resource constraints. (c) shows this
assignment interpreted as a cyclic schedule; the boxes in
bold are the instances of each task used to build a single
widget.

The �rst is that cyclic schedules are much easier to im-
plement: it is easier to communicate a short, repeatable
sequence of actions to the agents which must carry them
out, than to specify a much longer, non-repeating se-
quence. Secondly, the cost of computing optimal sched-
ules forN widgets grows exponentially with N , while the
cost of �nding a single widget cyclic schedule to make N
widgets is independent of N . Furthermore, as we shall
see, the complexity of our cyclic algorithm has in the
worst case only an extra logarithmic factor over the ba-
sic job shop algorithm.2

In order to explain our cyclic scheduling formulation,
we will start at the end, with some observations on cyclic
schedules. The main observation is that any assign-

ment of start times to tasks that satis�es the resource

constraints can be converted into a cyclic schedule. For
example, consider the scheduling problem speci�ed in
Figure 1(a). Figure 1(b) shows an assignment of these
tasks to resources. To convert this assignment into a

2An interesting compromise between computation cost
and optimality is to build cyclic schedules for building two or
more widgets at a time.



cyclic schedule, paste copies of the basic cycle together
into a strip in such a way that they do not overlap|
this induces a cyclic schedule with some particular cycle
time, as shown in Figure 1(c). Then, no matter what
task ordering was chosen, or what cycle time is induced,
it is possible to overlay a complete schedule for one single
widget such that the precedence constraints are satis�ed;
this is done in bold in Figure 1(c). A simple counting
argument shows that this is a proper cyclic schedule for
this set of tasks: every task is ful�lled, and there are no
tasks left over.
This exercise demonstrates several things. First,

whereas the makespan is the only measurement of in-
terest in the traditional job shop schedule, in the cyclic
case we have two: the cycle time K, and the latency, L,
which is the number of cycles required to complete a sin-
gle widget (which is also equal to the number of widgets
in production simultaneously).
Secondly, notice how the precedence constraints were

satis�ed. For any precedence constraint ti < tj , it is
either the case that ti and tj occur within the same cy-
cle, in which case the `normal' precedence holds between
them, or it is the case that ti is in one cycle, and tj is
in a subsequent cycle. (In Figure 1, the precedence con-
straints A < B, A < D, C < E, and D < E are satis�ed
`normally,' while constraints B < C and E < F cross
cycle boundaries.)3 The point is: in order to satisfy a
constraint ti < tj , we can either order ti before tj within
a cycle, or defer the execution of tj to the subsequent cy-
cle. This observation is the basis of our cyclic scheduling
formulation: we will restrict our attention to scheduling
of tasks within a single cycle, modifying the de�nition of
the precedence constraint to allow for the two di�erent
ways in which it can be satis�ed.
With this formulation, we can employ any standard

search procedure. There are no new decision variables:
we search only over orderings of steps within a cycle. We
can do satis�cing search for both a given cycle time K
and latency L, or we can optimize cycle time for �xed
latency or vice versa, or we can search for a set of dom-
inating solutions in both K and L.
We will now lay out our constraint encoding formally,

and introduce some additional variables and consistency
checks to avoid redundant or useless search.
The inputs are:

� t1; : : : ; tn: the set of tasks,

� r1; : : : ; rm: the set of resources,

� dur(t): the duration of each task,

� u(t; r): usage predicate for each task/resource pair,

� fti < tj ; : : :g: a set of precedence constraints on
task pairs,

� K: the cycle time,

� Lmax: maximum allowable latency (optional).

The decision variables we search over are:

3We have to be careful about tasks which overlap cycle
boundaries, such as task D; we will address this below.

� o(ti; tj): ordering predicate on pairs of tasks within
a single cycle.

We use the following non-decision variables for consis-
tency checking:

� st(t): start time of t wrt the beginning of a cycle,

� cs(t): cycle in which the �rst instance of t starts,

� cf(t): cycle in which the �rst instance of t �nishes.

Cycles are numbered from one at the beginning of the
schedule; cs and cf measure the positions of the begin
and end of each task for the �rst widget (e.g. in Figure
1 we have: cs(D) = 1, cf(D) = 2, and cs(F ) = 3). Note
that cs and cf are only required if there actually is a
desired limit on latency, which we will assume to be the
case.
For conciseness, we will add notation to represent the

condition that a task crosses the cycle boundary:

cross(t) � st(t) + dur(t) � K:

The constraints we must satisfy are as follows:

1. The start time of each task is within the cycle:

0 � st(t) < K:

2. If task ti is ordered before task tj , then the termi-
nation of ti in the cycle occurs before the start of tj
in the cycle.

o(ti; tj)! st(tj) > (st(ti) + dur(ti)) mod K:

It is possible for both o(ti; tj) and o(tj ; ti) to hold,
if either task crosses the cycle boundary.

3. If two tasks use the same resource, one must be
ordered before the other; if either task crosses the
cycle boundary, they must be ordered in both direc-
tions, and both tasks cannot cross the cycle bound-
ary.

i 6= j ^ u(ti; r) ^ u(tj ; r)!

(o(ti; tj) _ o(tj ; ti)) ^

((cross(ti) _ cross(tj))! o(ti; tj) ^ o(tj ; ti)) ^

(:cross(ti) _ :cross(tj)) :

4. If a precedence constraint ti < tj exists, then either
ti is ordered before tj , or tj is deferred with respect
to ti, which means that tj must start in a cycle that
comes after the cycle in which ti �nishes.

(ti < tj)! o(ti; tj) _ (cs(tj) > cf(ti)):

5. If a task crosses a cycle boundary, its �nish cycle
number is one greater than its start cycle number;
otherwise they are the same.

cross(t) ! cf(t) = cs(t) + 1;

:cross(t) ! cf(t) = cs(t):

6. The cycle numbers must be between one and Lmax:

1 � cs(t) � Lmax;

1 � cf(t) � Lmax:



When solving this problem, we initially assign possi-
ble ranges to the variables: st(t) 2 [0;K), cs(t); cf(t)2
f1; : : : ; Lmaxg, and o(ti; tj) 2 ftrue; falseg. Then we
search over assignments to o(ti; tj), using consistency
propagation techniques to prune the possible values of
all the variables. When enough ordering variables have
been set such that all the required constraints are guar-
anteed to hold, we take start times and cycle numbers
to be the minimal of their remaining possible values.
This description is complete, but misses some impor-

tant details concerning the e�cient pruning of the sup-
porting variables.
In the standard job shop constraint formulation it is

customary to keep, in place of a set-valued st(t), two
variables|earliest possible start time, est(t) and lat-
est possible start time lst(t)|which represent the end
points of st(t). The value of est(tj) can be e�ciently
updated by using the rule

8ti : o(ti; tj); est(tj) � est(ti) + dur(ti)

(and a symmetric rule for lst(t)). The advantage of this
representation is that the updated values for est(t) and
lst(t) can be computed quadratically in the number of
tasks by traversing them in topological order (for est(t))
and reverse topological order (for lst(t)).
In our formulation of the cyclic scheduling problem, we

also use est(t) and lst(t) to represent the end points of
st(t), and we use essentially the same rules for updating
these variables, except that we now must account for the
cycle boundary by introducing a mod K. But, since the
ordering decisions o(ti; tj) may have a cycle, the propa-
gation may not terminate at the end of the schedule, as
it does for standard job shop problems. For an example,
consider a task A that crosses the cycle boundary and as
a result forces an increase in the earliest start time for
another task B. If moving B then ultimately results in
changing est(A), the standard propagation will continue
propagating this cycle, until est(A) reaches K. How-
ever, we note that when the task sequence for a resource
is moved more than once, the current schedule is proven
to be infeasable and the propagation can therefore be
halted immediately.
Our treatment of the cs(t) and cf(t) follows a similar

pattern: we keep two variables to implement the lower
and upper bounds on each quantity. To update the val-
ues for ecs(t) and ecf(t), we initially assign each variable
to zero, then do two passes. In the �rst pass, ecf(t) is
updated using constraint 5 above|that is,

est(t) + dur(t) > K ! ecf(t) = ecs(t) + 1

In the second pass, we consider the precedence con-
straints in topological order. For each precedence con-
straint, we enforce the following constraints:

(ti < tj) ^ :o(ti; tj) ! ecs(tj) � ecf(ti) + 1

(ti < tj) ! ecs(tj) � ecf(ti)

Each time one of these constraints increments ecs(t), we
reinforce constraint 5 by incrementing ecf(t) by the same
amount.

The computation of lcs(t) and lcf(t) follow a sym-
metric pattern, initializing from constraint 5 and lst(t),
and updating by considering the precedence relations in
reverse topological order.

The algorithm described above produces a schedule for
a �xed cycle length K. In order to optimize over K, we
must iterate the scheduling process over possible values
of K. An upper bound on K is given by the makespan of
the problem, treated as an ordinary job shop scheduling
problem (which could be bounded or approximated by
any number of means). A lower bound for K is given by
the largest total time requirement for any one resource
(at which point that resource is 100% utilized).
The worst-case complexity of this algorithm, for a sin-

gle value of K, clearly di�ers from the complexity of the
ordinary job shop scheduler by only a small constant
factor (required to process the additional constraints for
computing cycle numbers). If we assume that the cy-
cle time and the task durations are all integers, we can
bound the worst case time required to search over multi-
ple values of K by T log(Kmax �Kmin), where T is the
time to invoke the scheduler for a single instance of K.

4 Experimental Results

It is clear that cyclic schedules have a number of ad-
vantages over non-cyclic schedules in applications where
schedules are repeated. The question is whether the cost
of generating cyclic schedules is reasonable enough that
these advantages can be realized. To verify that this is
indeed the case for our cyclic scheduling formulation, we
compare the cost of solving problems using our formula-
tion to the cost of solving the same problems using the
smaller classical formulation, with the goal of minimizing
the cycle length. The comparison is done by applying an
optimization search method (branch-and-bound with a
time cuto�) to each formulation of a given problem and
comparing the resulting cycle length. For the standard
formulation, we calculate the cycle length as the longest
distance between �rst and last use of a resource, since a
new widget can be started at those intervals.4

The scheduling problems used in this comparison are
from Norman Sadeh's scheduling test suite [Sadeh, 1992].
Disregarding the makespan limits, which are irrelevant
when minimizing cycle time, the suite gives us 20 dif-
ferent problem instances. Each problem has 50 tasks,
each task uses exactly one resource and there are 10 re-
sources in all. It should be noted that these particular
problems are not all that hard for modern search tech-
niques and well-honed heuristics [Crawford and Baker,
1994]. But, the question here is not whether our formu-
lation outperforms existing engines or heuristics for job
shop scheduling; the question is whether this larger cyclic
constraint formulation can be solved e�ciently enough

4Note that for the standard formulation, the cycle length
also replaces makespan in all pruning and heuristic calcula-
tions. In all other aspects, the search proceeds as usual; or-
dering decisions are made such that resource and precedence
constraints are satis�ed.



that the bene�ts still outweigh the possible increase in
solving time. For answering that question, these schedul-
ing problems are a perfectly suitable testbed.
To solve the two di�erent formulations of the schedul-

ing problems in the same manner, we use the gensolve
system [J�onsson, 1997], which is currently a prototype of
a general constraint satisfaction system that can use ar-
bitrary combinations of procedural propagation methods
to speed up the search e�ort. In this system, problems
are represented by providing the decision variables, the
constraints on value assignments, and procedures that
perform propagation. For both scheduling formulations
we use procedures to determine the possible start times
for tasks; in the regular formulation we use the standard
propagation of earliest and latest start times, while in
the cyclic formulation we use the propagation algorithm
described above (with a latency limit of Lmax = 2).
In both formulations we use the standard slack-based
heuristic described in [Smith and Cheng, 1993].
The key results of this comparison are tabulated in

Table 1. The results clearly demonstrate that the cyclic
scheduling formulation of these problems can be solved
quite e�ectively by standard constraint solvers. Further-
more, the results show that when it comes to scheduling
for cyclic applications, using this new formulation pro-
vides signi�cantly better results than using the standard
job shop formulation.

Cyclic Regular
Average Cycle Length 122.2 135.5

Average Distance from Optimal 0.1% 10.8%
Number of Optimal Solutions 19/20 0/20
Average runtime (seconds) 99 1800

Table 1: A comparison of the e�ectiveness of minimizing
the cycle time using the new cyclic scheduling formu-
lation and doing the same using the standard schedul-
ing formulation. Each problem instance was solved us-
ing a simple version of branch-and-bound search, on an
UltraSparc-II, with a time limit of thirty minutes.

5 Extensions

One of the advantages that our approach to cyclic
scheduling has over existing special-purpose algorithms
is that a general constraint satisfaction formulation can
be extended and adapted much more easily. As exam-
ples of this, we will briey describe how our approach can
be extended to the more general class of cyclic resource-
constrained project scheduling problems, and how it can
be adapted to provide an approach to recover from fail-
ures in the exectuion of cyclic schedules.
In real-world manufacturing scheduling there are typ-

ically resources that have capacity greater than one (e.g.
a pool of skilled labor), tasks may require multiple in-
stances of each resource type and each task may use
multiple resource types. These characteristics have been

formalized as the resource constrained project schedul-
ing (RCPS) problem [Blazewicz et al., 1983], which is
considered signi�cantly more di�cult than the job shop
problem.
We would like to extend our cyclic formulation to cre-

ate a solution for the cyclic RCPS problem. We will do
this by adapting an existing approach to solving such
problems. This approach is based on initially schedul-
ing the tasks without any regard to the resource con-
straints, but respecting the precedence constraints, and
then eliminating resource constraint violations by assign-
ing values to corresponding ordering decision variables
[Crawford, 1996]. First, let us point out conditions that
have changed from the job shop problem:

� Tasks that use the same resource r do not necessar-
ily need to be ordered with respect to each other,
if the sum of their usage of r is less than the total
availability of r.

� Tasks can have a duration that exceeds the cycle
length K, provided that for each task t that uses
some resource r with capacity c, we have u(t; r) � c
and

ddur(t)=Ke � u(t; r) � c

As a result, a task's cycle �nish number can be more
than one greater that its cycle start number.

� The lower bound for K is given by the largest to-
tal time requirement for any resource divided by its
capacity.

In the cyclic formulation of the above-mentioned ap-
proach, all the tasks are initially scheduled at the begin-
ning of the cycle, without any regard to either resource
constraints or precedence constraints. The resource con-
straint violations are then eliminated as before, while
precedence constraint violations are resolved by either
making the appropriate ordering decision within the cy-
cle or by defering the second task to a later cycle. The
impact of each ordering decision is then propagated to
restrict the bounds on start times and cycle numbers for
later tasks, in a similar fashion as for the cyclic job shop
scheduling formulation. Just as for the standard RCPS
problems, systematic backtracking methods such as lim-

ited discrepancy search [Harvey and Ginsberg, 1995], or
nonsystematic repair methods like doubleback optimiza-

tion [Crawford, 1996], can then be used to explore the
space of decisions.
Turning our attention to schedule recovery, it is well

known that optimal or near optimal schedules lack toler-
ance for delays, and thus are easily broken when delays
do occur. In the non-cyclic case, we can generate a new
schedule from the point of disruption, either from scratch
or by modifying the old schedule. However, since one of
the goals of cyclic scheduling is regularity, generating an
entirely new schedule is not a desirable option. In the
cyclic case, we want to focus on returning as quickly as
possible to the already-established schedule.
To do this, we consider a rescheduling window, which

covers from when the disruption occurs to when the



cyclic schedule will be restored. Within it tasks will not
follow the repeating pattern used elsewhere in the sched-
ule. The rescheduling window may have jagged left and
right edges; any tasks running at the time of the disrup-
tion, but not a�ected by it, jut into the window from
the left side, and any tasks in progress when the cyclic
schedule is restored jut into the window from the right
side.

The right edge of the window can be determined by
incrementing over possible times until a window that is
big enough to accommodate the rescheduling is found. In
some cases this may be achieved without pushing back
the entire schedule. However, if the disruption is big
enough, it may not be possible to recover unless the en-
tire schedule is pushed back, thus allowing the recovery
more time in which to place the schedule. Once a win-
dow has been established, any search technique can be
used to schedule the tasks within it.

6 Conclusion and Related Work

In this paper we have developed a formulation for solving
cyclic job shop scheduling problems as constraint satis-
faction problems. We have implemented this formulation
and shown that it can be used to generate good cyclic
schedules, using standard constraint satisfaction meth-
ods. We have also demonstrated that for the purpose
of �nding cyclic schedules, the use of our formulation
outperforms the use of standard job shop formulations,
when the same search technique and shceduling heuris-
tic are applied to both. In addition to this, we have de-
scribed how our formulation can be generalized to cyclic
resource constrained project schedules and how the for-
mulation allows us to develop methods for recovering
from failures in the execution of cyclic schedules.
As mentioned in the introduction, there are several

formulations for cyclic job shop scheduling in the OR
community. Furthermore, there exist speci�c cyclic
scheduling techniques in industry, e.g, those used to
schedule update cycles on recent Honeywell avionics
[Boddy and Goldman, 1994]. We have not been able to
do performance comparisons between our approach and
other techniques, but the formulation presented here has
other clear advantages in terms of understandability, and
in terms of being able to exploit existing constraint rea-
soning techniques and heuristics. Perhaps most impor-
tantly, based on this simple constraint representation,
further research can build on this formulation. For ex-
ample, by adapting it to more complex scheduling prob-
lems |as we have started doing with the cyclic RCPS
problem.

On the other hand, the OR techniques typically han-
dle more complex types of precedence constraints than
we do: it is allowed for a task tj to depend on the com-
pletion of a task ti from a di�erent iteration|this is
needed for the compiler problem where a loop may con-
tain a statement of the form x[i] := f(y[i�k]). This kind
of precedence does not seem to occur in manufacturing
problems, our primary interest, but it would nonetheless

be interesting to see if this representation can be ex-
tended to handle such more general forms of precedence.

References

[Baker, 1974] K. R. Baker. Introduction to Sequencing

and Scheduling. Wiley, New York, 1974.

[Blazewicz et al., 1983] J. Blazewicz, J. K. Lenstra, and
A. H. G. Rinnooy Kan. Scheduling subject to resource
constraints: Classi�cation and complexity. Discrete

Applied Mathematics, 5:11{24, 1983.

[Boddy and Goldman, 1994]

Mark S. Boddy and Robert P. Goldman. Empirical
results on scheduling and dynamic backtracking. In
Proceedings of the International Symposium on Arti-

�cial Intelligence, Robotics, and Automation for Space

(ISAIRAS), 1994.

[Crawford and Baker, 1994] James M. Crawford and
Andrew B. Baker. Experimental results on the appli-
cation of satis�ability algorithms to scheduling prob-
lems. In Proceedings of the Twelfth National Confer-

ence on Arti�cial Intelligence, 1994.

[Crawford, 1996] James M. Crawford. An approach to
resource constrained project scheduling. In G. F.
Luger, editor, Arti�cial Intelligence and Manufactur-

ing Research Planning Workshop, Albuquerque, New
Mexico, 1996. The AAAI Press.

[Hanen and Munier, 1995] C. Hanen and A. Munier.
Cyclic scheduling on parallel processors: An overview.
In P. Chr�etienne, E. G. Co�man, Jr., J. K. Lenstra,
and Z. Liu, editors, Scheduling Theory and its Appli-

cations, chapter 9. John Wiley & Sons, 1995.

[Hanen, 1994] Claire Hanen. Study of a NP-hard cyclic
scheduling problem: The recurrent job-shop. Eu-

ropean Journal of Operational Research, 72:82{101,
1994.

[Harvey and Ginsberg, 1995] W. D. Harvey and M. L.
Ginsberg. Limited discrepancy search. In Proceed-

ings of the Fourteenth International Joint Conference

on Arti�cial Intelligence (IJCAI-95), pages 607{613,
1995.

[J�onsson, 1997] Ari K. J�onsson. Procedural Reasoning

in Constraint Satisfaction. PhD thesis, Stanford Uni-
versity, Stanford, CA, 1997.

[Roundy, 1992] Robin Roundy. Cyclic schedules for job
shops with identical jobs. Mathematics of Operations

Research, 17(4):842{865, November 1992.

[Sadeh, 1992] Norman Sadeh. Look-ahead techniques
for micro-opportunistic job shop scheduling. Technical
Report CMU-CS-91-102, School of Computer Science,
Carnegie Mellon University, 1992.

[Smith and Cheng, 1993] Stephen F. Smith and Cheng-
Chung Cheng. Slack-based heuristics for constraint
satisfaction scheduling. In Proceedings of the Eleventh

National Conference on Arti�cial Intelligence, pages
139{44, 1993.


